Скрыть объявление
Гость отличная новость! Мы открыли доступ к ранее скрытому контенту.

Вам доступно более 44 000 видео уроков, книг и программ без VIP статуса. Более подробно ЗДЕСЬ.

Открыто [ML/Класс] DSCource 2. Data Mining с помощью Python

Тема в разделе "Программирование", создана пользователем Солнышко, 1 фев 2016.

0/5, Голосов: 0

Этап:
Набор участников
Цена:
7000.00 руб.
Участников:
0 из 25
Организатор:
требуется
0%
Расчетный взнос:
308 руб.
  • (Записывайтесь, чем больше участников, тем меньше расчетный взнос)

  1. Солнышко

    Солнышко Команда форума

    Сообщения:
    24.096
    Симпатии:
    57.122
    Юрий Кашницкий, Data Mining с помощью Python
    Видео лекций, презентации, ссылки по второму курсу данной серии


    "Мы постарались сделать программу так, чтобы в нее входили только самые основные навыки, необходимые в реальной работе. Здесь не будет длинной теории, только практически важные вещи."

    • - Юрий Кашницкий, преподаватель Высшей Школы Экономики, умеющий объяснять сложные вещи простым языком, познакомит слушателей сперва с основными инструментами, которые пригодятся начинающему Data Scientist'у, а после проведет курс по машинному обучению, в котором даст необходимые навыки для построения прогнозных моделей

    Data Mining (добыча данных, интеллектуальный анализ данных, глубинный анализ данных) – собирательное название, используемое для обозначения совокупности методов обнаружения в данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности

    Kaggle – это платформа для исследователей разных уровней, где они могут опробовать свои модели анализа данных на серьезных и актуальных задачах. Суть такого ресурса – не только в возможности получить неплохой денежный приз в случае, если именно ваша модель окажется лучшей, но и в том (а, это, пожалуй, гораздо важнее), чтобы набраться опыта и стать специалистом в области анализа данных и машинного обучения.


    Данный курс освящает практическое применение алгоритмов обработки данных на примере решения одной из самых популярных задач платформы Kaggle, Titanic: Learning from Disaster (предсказание выживших в катастрофе пассажиров)

    Урок 1. Введение
    - Введение в машинное обучение, необходимые навыки
    - Задачи классификации, регрессии и кластеризации
    - Краткий обзор Kaggle
    - Открытие соревнования Kaggle Inclass
    - Знакомство с набором данных по автострахованию этого соревнования
    - Статистические распределения, нормализация признаков, приведение к нормальному распределению
    - Деревья решений
    - Применение дерева решений Scikit-learn к набору данных iris и данным из контеста Kaggle Inclass
    - Настройка параметров дерева, кросс-валидация

    Урок 2. Обзор инструментов
    - Работа с векторами и матрицами в библиотеке NumPy
    - Обзор библиотеки для научных выичслений SciPy
    - Тетрадки Jupyter (IPython) для презентации материала, содержащего код
    - Визуализация данных с Matplotlib
    - Чтение и обработка данных с библиотекой Pandas
    - Решение задачи соревнования Kaggle "Titanic: Learning from Disaster" c помощью Pandas
    - Обзор библиотеки машинного обучения Scikit-learn

    Урок 3. Обучение с учителем. Классификация
    - Работа с признаками – отбор, преобразование, построение
    - Метрики качества алгоритмов машинного обучения (accuracy, precision, recall, F-score). ROC-кривая, AUC
    - Метод максимального правдоподобия
    - Логистическая регрессия

    Урок 4. Обучение с учителем. Ансамбли. Переобучение
    - Случайный лес (Random Forest)
    - Случайный лес на примере набора данных Titanic
    - Случайный лес на примере набора данных по автострахованию
    - Бустинг (boosting) и бэггинг (bagging)
    - Сравнение бустинга и бэггинга на наборах данных репозитория UCI
    - Стекинг. Демонстрация решения задачи категоризации продуктов Otto (вкратце)
    - Переобучение, кросс-валидация, регуляризация
    - Пример регуляризации для логистической регрессии

    Урок 5. Обучение без учителя
    - Обзор методов кластеризации, снижения размерности, поиска аномалий в данных
    - Кластеризации городов России по социально-экономическим показателям
    - Сингулярное разложение матрицы
    - Пример снижения размерности изображений, сжатие изображений
    - Снижение размерности как способ визуализации даных
    - Решение задачи соревнования Kaggle "Titanic: Learning from Disaster" с помощью Python

    Урок 6. Продвинутые методы. API Scikit-learn
    - Нейронные сети, библиотеки nolearn и Lasagne NN
    - Библиотека XGBoost, сравнение с градиентным бустингом в Scikit-learn
    - Пример голосования между алгоритмами для повышения качества классификации
    - Смешивание (блендинг) алгоритмов на примере задачи Kaggle "Titanic: Learning from Disaster"
    - Стекинг. Пример для Titanic
    - Разработка собственного класса Scikit-learn Estimator для задачи по автострахованию Kaggle Inclass. kNN с подобранной метрикой.

    Цена инфопродукта - 7000 руб.

     
Сохранить в соц. сетях:
Оценить эту тему:
/5,