Скрыть объявление
Гость отличная новость! Мы открыли доступ к ранее скрытому контенту.

Вам доступно более 44 000 видео уроков, книг и программ без VIP статуса. Более подробно ЗДЕСЬ.

пространство

Евкли́дово простра́нство (также эвкли́дово простра́нство) — в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность, равную 3.
В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов: конечномерное вещественное векторное пространство





R


n




{\displaystyle \mathbb {R} ^{n}}
с введённым на нём положительно определённым скалярным произведением, либо метрическое пространство, соответствующее такому векторному пространству. В этой статье за исходное будет взято первое определение.




n


{\displaystyle n}
-мерное евклидово пространство обозначается





E


n


,


{\displaystyle \mathbb {E} ^{n},}
также часто используется обозначение





R


n




{\displaystyle \mathbb {R} ^{n}}
(если из контекста ясно, что пространство обладает евклидовой структурой).

Узнать больше на Wikipedia.org