Скрыть объявление
Гость отличная новость! Мы открыли доступ к ранее скрытому контенту.

Вам доступно более 44 000 видео уроков, книг и программ без VIP статуса. Более подробно ЗДЕСЬ.

правило

Пра́вило бура́вчика (пра́вило винта́), или пра́вило правой руки, — варианты мнемонического правила для определения направления векторного произведения и тесно связанного с этим выбора правого базиса в трёхмерном пространстве, соглашения о положительной ориентации базиса в нём, и соответственно — знака любого аксиального вектора, определяемого через ориентацию базиса.
В частности, это относится к определению направления таких важных в физике аксиальных векторов, как вектор угловой скорости, характеризующий скорость вращения тела, вектор магнитной индукции B и многих других, а также для определения направления таких векторов, которые определяются через аксиальные, например, направление индукционного тока при заданном векторе магнитной индукции.
Для многих из этих случаев кроме общей формулировки, позволяющей определять направление векторного произведения или ориентацию базиса вообще, имеются специальные формулировки правила, особенно хорошо приспособленные к каждой конкретной ситуации (но гораздо менее общие).
В принципе, как правило, выбор одного из двух возможных направлений аксиального вектора считается чисто условным, однако он должен происходить всегда одинаково, чтобы в конечном результате вычислений не оказался перепутан знак. Для этого и служат правила, составляющие предмет этой статьи (они позволяют всегда придерживаться одного и того же выбора).
Под названием правила правой руки существует несколько достаточно различающихся правил.
Существует также несколько вариантов правила левой руки.
В принципе можно ограничиться выбором из всего набора этих правил в разных формулировках (или из им подобных) какого-то одного, относящегося к универсальному типу (определению знака векторного произведения или ориентации базиса). Это минимально необходимый выбор (хотя бы один вариант правила нужен: без него вообще не только в принципе невозможно следовать общепринятым соглашениям, но и крайне трудно быть последовательным даже в собственных вычислениях). Но в принципе этого и достаточно: вместо всех правил, упоминаемых в этой статье или других им подобных в принципе можно пользоваться всего одним, если только знать порядок сомножителей в формулах, содержащих векторные произведения.

Узнать больше на Wikipedia.org

    Последнее содержимое с меткой правило

  1. Train